Please I very need to understand. I’m working on a modified yolo model but I faced this thing: I have different summary when start the training and when completed it:
MM summary: 465 layers, 1,186,399 parameters, 1,186,383 gradients, 3.6 GFLOPs
TensorBoard: Start with ‘tensorboard --logdir /content/drive/MyDrive/yolov11/runs/detect/train54’, view at http://localhost:6006/
Freezing layer ‘model.29.dfl.conv.weight’
train: Scanning /content/drive/MyDrive/ultralytics/datasets/UAV/labels/train.cache… 5197 images, 3 backgrounds, 0 corrupt: 100% 5200/5200 [00:00<?, ?it/s]
/content/drive/MyDrive/yolov11/ultralytics/data/augment.py:1850: UserWarning: Argument(s) ‘quality_lower’ are not valid for transform ImageCompression
A.ImageCompression(quality_lower=75, p=0.0),
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, method=‘weighted_average’, num_output_channels=3), CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))
val: Scanning /content/drive/MyDrive/ultralytics/datasets/UAV/labels/val.cache… 2600 images, 0 backgrounds, 0 corrupt: 100% 2600/2600 [00:00<?, ?it/s]
Plotting labels to /content/drive/MyDrive/yolov11/runs/detect/train54/labels.jpg…
optimizer: ‘optimizer=auto’ found, ignoring ‘lr0=0.01’ and ‘momentum=0.937’ and determining best ‘optimizer’, ‘lr0’ and ‘momentum’ automatically…
optimizer: SGD(lr=0.01, momentum=0.9) with parameter groups 102 weight(decay=0.0), 123 weight(decay=0.0005), 122 bias(decay=0.0)
TensorBoard: model graph visualization added ✅
Image sizes 640 train, 640 val
Using 2 dataloader workers
The end:
300 epochs completed in 18.585 hours.
Optimizer stripped from /content/drive/MyDrive/yolov11/runs/detect/train54/weights/last.pt, 2.9MB
Optimizer stripped from /content/drive/MyDrive/yolov11/runs/detect/train54/weights/best.pt, 2.9MB
Validating /content/drive/MyDrive/yolov11/runs/detect/train54/weights/best.pt…
Ultralytics 8.3.9 🚀 Python-3.12.12 torch-2.8.0+cu126 CUDA:0 (Tesla T4, 15095MiB)
MM summary: 385 layers, 985,255 parameters, 73,856 gradients, 8.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100% 82/82 [00:48<00:00, 1.70it/s]
all 2600 2621 0.948 0.849 0.882 0.583
Speed: 0.2ms preprocess, 3.9ms inference, 0.0ms loss, 2.0ms postprocess per image
Why this happen?