[Unofficial] Benchmark Results (How fast can you YOLO)

Guidelines

Post post the output from running yolo checks in the CLI OR write your computer specs including:

Operating System
CPU
RAM
GPU (make/model/vRAM)
Python version
PyTorch version
Ultralytics version

and then share the performance results from your PC running the following CLI command:

yolo benchmark model=yolov8n.pt \ 
data='coco128.yaml' \
imgsz=640 \
half=False \
device=0
1 Like

YOLO Checks

Ultralytics YOLOv8.2.48 πŸš€ Python-3.10.12 
torch-2.2.0+cu121 
CUDA:0 (NVIDIA GeForce RTX 2060, 5924MiB)
Setup complete βœ… 
(12 CPUs, 15.6 GB RAM, 81.5/101.0 GB disk)

OS                  POP_OS!
Environment         Linux
Python              3.10.12
Install             git
RAM                 15.56 GB
CPU                 AMD Ryzen 5 1600 Six-Core Processor
CUDA                12.1

matplotlib          βœ… 3.8.1>=3.3.0
opencv-python       βœ… 4.8.1.78>=4.6.0
pillow              βœ… 10.1.0>=7.1.2
pyyaml              βœ… 6.0.1>=5.3.1
requests            βœ… 2.31.0>=2.23.0
scipy               βœ… 1.11.3>=1.4.1
torch               βœ… 2.2.0>=1.8.0
torchvision         βœ… 0.17.0>=0.9.0
tqdm                βœ… 4.66.1>=4.64.0
psutil              βœ… 5.9.6
py-cpuinfo          βœ… 9.0.0
thop                βœ… 0.1.1-2209072238>=0.1.1
pandas              βœ… 2.1.3>=1.1.4
seaborn             βœ… 0.13.0>=0.11.0

Benchmark Results

Benchmarks complete for yolov8n.pt on coco128.yaml at imgsz=640 (387.02s)

                   Format Status❔  Size (MB)  metrics/mAP50-95(B)  Inference time (ms/im)     FPS
0                 PyTorch       βœ…        6.2               0.4478                   17.69   56.52
1             TorchScript       βœ…       12.4               0.4524                    6.35  157.47
2                    ONNX       βœ…       12.2               0.4524                   72.50   13.79
3                OpenVINO       ❌        0.0                  NaN                     NaN     NaN
4                TensorRT       βœ…       19.3               0.4524                    3.51  285.28
5                  CoreML       ❌        0.0                  NaN                     NaN     NaN
6   TensorFlow SavedModel       βœ…       30.6               0.4524                   71.04   14.08
7     TensorFlow GraphDef       βœ…       12.3               0.4524                   72.12   13.87
8         TensorFlow Lite       ❌        0.0                  NaN                     NaN     NaN
9     TensorFlow Edge TPU       ❌        0.0                  NaN                     NaN     NaN
10          TensorFlow.js       ❌        0.0                  NaN                     NaN     NaN
11           PaddlePaddle       βœ…       24.4               0.4524                  326.35    3.06
12                   NCNN       βœ…       12.2               0.4524                   73.36   13.63
1 Like

Awesome, thanks for sharing! You can see results from the last 24 hours here in our daily YOLO benchmarks:

2 Likes

Yolo Checks

Ultralytics YOLOv8.2.69 πŸš€ Python-3.11.9 torch-2.2.2+cu121 CUDA:0 (NVIDIA GeForce RTX 4090, 24564MiB)
Setup complete βœ… (384 CPUs, 511.7 GB RAM, 3038.9/3725.2 GB disk)

OS                  Windows-10-10.0.22631-SP0
Environment         Windows
Python              3.11.9
Install             pip
RAM                 511.71 GB
CPU                 AMD EPYC 9654 96-Core Processor
CUDA                12.1

numpy               βœ… 1.26.3<2.0.0,>=1.23.0
matplotlib          βœ… 3.9.1>=3.3.0
opencv-python       βœ… 4.10.0.84>=4.6.0
pillow              βœ… 10.2.0>=7.1.2
pyyaml              βœ… 6.0.1>=5.3.1
requests            βœ… 2.32.3>=2.23.0
scipy               βœ… 1.14.0>=1.4.1
torch               βœ… 2.2.2+cu121>=1.8.0
torchvision         βœ… 0.17.2+cu121>=0.9.0
tqdm                βœ… 4.66.4>=4.64.0
psutil              βœ… 6.0.0
py-cpuinfo          βœ… 9.0.0
pandas              βœ… 2.2.2>=1.1.4
seaborn             βœ… 0.13.2>=0.11.0
ultralytics-thop    βœ… 2.0.0>=2.0.0

Benchmark

Benchmarks complete for yolov8n.pt on coco128.yaml at imgsz=640 (334.71s)
                   Format Status❔  Size (MB)  metrics/mAP50-95(B)  Inference time (ms/im)     FPS
0                 PyTorch       βœ…        6.2               0.4472                   19.56   51.13
1             TorchScript       βœ…       12.4               0.4520                    4.71  212.35
2                    ONNX       βœ…       12.2               0.4522                    8.47  118.00
3                OpenVINO       ❌        0.0                  NaN                     NaN     NaN
4                TensorRT       βœ…       17.3               0.4512                    3.15  317.07
5                  CoreML       ❌        0.0                  NaN                     NaN     NaN
6   TensorFlow SavedModel       βœ…       30.6               0.4524                   30.13   33.18
7     TensorFlow GraphDef       βœ…       12.3               0.4524                   31.88   31.37
8         TensorFlow Lite       ❌        0.0                  NaN                     NaN     NaN
9     TensorFlow Edge TPU       ❌        0.0                  NaN                     NaN     NaN
10          TensorFlow.js       ❌        0.0                  NaN                     NaN     NaN
11           PaddlePaddle       βœ…       24.4               0.4524                  287.29    3.48
12                   NCNN       βœ…       12.2               0.4524                   55.07   18.16
1 Like

YOLO Checks

Ultralytics YOLOv8.2.77 πŸš€ Python-3.10.14 torch-2.3.1 CUDA:0 (Tesla T4, 14916MiB)
Setup complete βœ… (64 CPUs, 433.0 GB RAM, 115.4/992.2 GB disk)

OS                  Linux-5.15.0-1017-azure-x86_64-with-glibc2.35
Environment         Docker
Python              3.10.14
Install             git
RAM                 433.01 GB
CPU                 AMD EPYC 7V12 64-Core Processor
CUDA                12.1

numpy               βœ… 1.23.5<2.0.0,>=1.23.0
matplotlib          βœ… 3.9.2>=3.3.0
opencv-python       βœ… 4.10.0.84>=4.6.0
pillow              βœ… 10.3.0>=7.1.2
pyyaml              βœ… 6.0.1>=5.3.1
requests            βœ… 2.32.2>=2.23.0
scipy               βœ… 1.14.0>=1.4.1
torch               βœ… 2.3.1>=1.8.0
torchvision         βœ… 0.18.1>=0.9.0
tqdm                βœ… 4.66.4>=4.64.0
psutil              βœ… 5.9.0
py-cpuinfo          βœ… 9.0.0
pandas              βœ… 2.2.2>=1.1.4
seaborn             βœ… 0.13.2>=0.11.0
ultralytics-thop    βœ… 2.0.0>=2.0.0

CPU (AMD EPYC 7V12) Benchmark

yolo benchmark model=yolov8n.pt data="coco128.yaml" imgsz=640 half=False device="cpu"

Benchmarks complete for yolov8n.pt on coco128.yaml at imgsz=640 (292.30s)
                   Format Status❔  Size (MB)  metrics/mAP50-95(B)  Inference time (ms/im)    FPS
0                 PyTorch       βœ…        6.2               0.4478                   45.47  21.99
1             TorchScript       βœ…       12.4               0.4524                   47.08  21.24
2                    ONNX       βœ…       12.2               0.4524                   76.91  13.00
3                OpenVINO       βœ…       12.3               0.4524                   31.68  31.57
4                TensorRT       ❌        0.0                  NaN                     NaN    NaN
5                  CoreML       ❎        6.2                  NaN                     NaN    NaN
6   TensorFlow SavedModel       βœ…       30.6               0.4524                   63.86  15.66
7     TensorFlow GraphDef       βœ…       12.3               0.4524                   62.04  16.12
8         TensorFlow Lite       βœ…       12.3               0.4524                  116.79   8.56
9     TensorFlow Edge TPU       ❎        3.9                  NaN                     NaN    NaN
10          TensorFlow.js       ❎       12.3                  NaN                     NaN    NaN
11           PaddlePaddle       βœ…       24.4               0.4524                  147.00   6.80
12                   NCNN       βœ…       12.2               0.4524                  125.02   8.00

GPU (Tesla T4) Benchmark

Benchmarks complete for yolov8n.pt on coco128.yaml at imgsz=640 (384.53s)
                   Format Status❔  Size (MB)  metrics/mAP50-95(B)  Inference time (ms/im)     FPS
0                 PyTorch       βœ…        6.2               0.4478                   13.54   73.87
1             TorchScript       βœ…       12.4               0.4524                    4.19  238.70
2                    ONNX       βœ…       12.2               0.4524                  112.69    8.87
3                OpenVINO       ❌        0.0                  NaN                     NaN     NaN
4                TensorRT       βœ…       17.4               0.4523                    2.86  349.36
5                  CoreML       ❌        0.0                  NaN                     NaN     NaN
6   TensorFlow SavedModel       βœ…       30.6               0.4524                   65.01   15.38
7     TensorFlow GraphDef       βœ…       12.3               0.4524                   64.78   15.44
8         TensorFlow Lite       ❌        0.0                  NaN                     NaN     NaN
9     TensorFlow Edge TPU       ❌        0.0                  NaN                     NaN     NaN
10          TensorFlow.js       ❌        0.0                  NaN                     NaN     NaN
11           PaddlePaddle       βœ…       24.4               0.4524                  278.00    3.60
12                   NCNN       βœ…       12.2               0.4524                   91.11   10.98