# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global configuration YAML with settings and hyperparameters for YOLO training, validation, prediction and export
# For documentation see https://docs.ultralytics.com/usage/cfg/
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
# Train settings -------------------------------------------------------------------------------------------------------
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: # (str, optional) path to data file, i.e. coco8.yaml
epochs: 100 # (int) number of epochs to train for
time: # (float, optional) number of hours to train for, overrides epochs if supplied
patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[h,w] for predict and export modes
save: True # (bool) save train checkpoints and predict results
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
cache: False # (bool) True/ram, disk or False. Use cache for data loading
device: # (int | str | list) device: CUDA device=0 or [0,1,2,3] or "cpu/mps" or -1 or [-1,-1] to auto-select idle GPUs
This file has been truncated. show original