How to extract YOLOv5 detection results and passes it to ArduinoIDE at the same time

I am doing a project that has to let my ESP32 to response according to the YOLOv5 detected results synchronously. For example, when i detected bumps, my esp32 will light on the LED; while detected potholes, it will blinks for 3seconds.
I had tried lots of ways but i still cannot extract the detection results and send it synchronously to the environment of Arduino, therefore i would like to restart it from the original script. May anyone guide me on

  1. Retrieve the detection results (bumps, potholes) and 2)send the results synchronously to Arduino IDE?

i had trained my own model and it’s detecting the video well
What’s printing out now for the detection results in the PyCharm terminal are like this:

video 1/1 (840/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 57.2ms
video 1/1 (841/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 55.5ms
video 1/1 (842/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 55.1ms
video 1/1 (843/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 55.7ms
video 1/1 (844/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 56.4ms
video 1/1 (845/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 63.0ms
video 1/1 (846/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 63.9ms
video 1/1 (847/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 56.1ms
video 1/1 (848/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 63.9ms
video 1/1 (849/849) C:\Users\yimin\Desktop\FYP\RoadDetection\VID_20241126_131430.mp4: 640x384 1 bumps, 60.7ms

Below are the original built-in “detect.py” from YOLOv5

# Ultralytics YOLOv5 🚀, AGPL-3.0 license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:
    $ python detect.py --weights yolov5s.pt --source 0                               # webcam
                                                     img.jpg                         # image
                                                     vid.mp4                         # video
                                                     screen                          # screenshot
                                                     path/                           # directory
                                                     list.txt                        # list of images
                                                     list.streams                    # list of streams
                                                     'path/*.jpg'                    # glob
                                                     'https://youtu.be/LNwODJXcvt4'  # YouTube
                                                     'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Usage - formats:
    $ python detect.py --weights yolov5s.pt                 # PyTorch
                                 yolov5s.torchscript        # TorchScript
                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                 yolov5s_openvino_model     # OpenVINO
                                 yolov5s.engine             # TensorRT
                                 yolov5s.mlpackage          # CoreML (macOS-only)
                                 yolov5s_saved_model        # TensorFlow SavedModel
                                 yolov5s.pb                 # TensorFlow GraphDef
                                 yolov5s.tflite             # TensorFlow Lite
                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                                 yolov5s_paddle_model       # PaddlePaddle
"""

import argparse
import csv
import os
import platform
import sys
from pathlib import Path

import torch

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from ultralytics.utils.plotting import Annotator, colors, save_one_box

from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
    LOGGER,
    Profile,
    check_file,
    check_img_size,
    check_imshow,
    check_requirements,
    colorstr,
    cv2,
    increment_path,
    non_max_suppression,
    print_args,
    scale_boxes,
    strip_optimizer,
    xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(
    weights=ROOT / "yolov5s.pt",  # model path or triton URL
    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)
    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
    imgsz=(640, 640),  # inference size (height, width)
    conf_thres=0.25,  # confidence threshold
    iou_thres=0.45,  # NMS IOU threshold
    max_det=1000,  # maximum detections per image
    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
    view_img=False,  # show results
    save_txt=False,  # save results to *.txt
    save_format=0,  # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
    save_csv=False,  # save results in CSV format
    save_conf=False,  # save confidences in --save-txt labels
    save_crop=False,  # save cropped prediction boxes
    nosave=False,  # do not save images/videos
    classes=None,  # filter by class: --class 0, or --class 0 2 3
    agnostic_nms=False,  # class-agnostic NMS
    augment=False,  # augmented inference
    visualize=False,  # visualize features
    update=False,  # update all models
    project=ROOT / "runs/detect",  # save results to project/name
    name="exp",  # save results to project/name
    exist_ok=False,  # existing project/name ok, do not increment
    line_thickness=3,  # bounding box thickness (pixels)
    hide_labels=False,  # hide labels
    hide_conf=False,  # hide confidences
    half=False,  # use FP16 half-precision inference
    dnn=False,  # use OpenCV DNN for ONNX inference
    vid_stride=1,  # video frame-rate stride
):
    """
    Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.

    Args:
        weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
        source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
            index. Default is 'data/images'.
        data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
        imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
        conf_thres (float): Confidence threshold for detections. Default is 0.25.
        iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
        max_det (int): Maximum number of detections per image. Default is 1000.
        device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
            best available device.
        view_img (bool): If True, display inference results using OpenCV. Default is False.
        save_txt (bool): If True, save results in a text file. Default is False.
        save_csv (bool): If True, save results in a CSV file. Default is False.
        save_conf (bool): If True, include confidence scores in the saved results. Default is False.
        save_crop (bool): If True, save cropped prediction boxes. Default is False.
        nosave (bool): If True, do not save inference images or videos. Default is False.
        classes (list[int]): List of class indices to filter detections by. Default is None.
        agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
        augment (bool): If True, use augmented inference. Default is False.
        visualize (bool): If True, visualize feature maps. Default is False.
        update (bool): If True, update all models' weights. Default is False.
        project (str | Path): Directory to save results. Default is 'runs/detect'.
        name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
        exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
            False.
        line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
        hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
        hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
        half (bool): If True, use FP16 half-precision inference. Default is False.
        dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
        vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.

    Returns:
        None

    Examples:
        ```python
        from ultralytics import run

        # Run inference on an image
        run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')

        # Run inference on a video with specific confidence threshold
        run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
        ```
    """
    source = str(source)
    save_img = not nosave and not source.endswith(".txt")  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
    webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
    screenshot = source.lower().startswith("screen")
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim
            if model.xml and im.shape[0] > 1:
                ims = torch.chunk(im, im.shape[0], 0)

        # Inference
        with dt[1]:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            if model.xml and im.shape[0] > 1:
                pred = None
                for image in ims:
                    if pred is None:
                        pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
                    else:
                        pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
                pred = [pred, None]
            else:
                pred = model(im, augment=augment, visualize=visualize)
        # NMS
        with dt[2]:
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Define the path for the CSV file
        csv_path = save_dir / "predictions.csv"

        # Create or append to the CSV file
        def write_to_csv(image_name, prediction, confidence):
            """Writes prediction data for an image to a CSV file, appending if the file exists."""
            data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
            with open(csv_path, mode="a", newline="") as f:
                writer = csv.DictWriter(f, fieldnames=data.keys())
                if not csv_path.is_file():
                    writer.writeheader()
                writer.writerow(data)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f"{i}: "
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")  # im.txt
            s += "{:g}x{:g} ".format(*im.shape[2:])  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    c = int(cls)  # integer class
                    label = names[c] if hide_conf else f"{names[c]}"
                    confidence = float(conf)
                    confidence_str = f"{confidence:.2f}"

                    if save_csv:
                        write_to_csv(p.name, label, confidence_str)

                    if save_txt:  # Write to file
                        if save_format == 0:
                            coords = (
                                (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
                            )  # normalized xywh
                        else:
                            coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist()  # xyxy
                        line = (cls, *coords, conf) if save_conf else (cls, *coords)  # label format
                        with open(f"{txt_path}.txt", "a") as f:
                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == "Linux" and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(".mp4"))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")

    # Print results
    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
    LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)


def parse_opt():
    """
    Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.

    Args:
        --weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
        --source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
        --data (str, optional): Dataset YAML path. Provides dataset configuration information.
        --imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
        --conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
        --iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
        --max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
        --device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
        --view-img (bool, optional): Flag to display results. Defaults to False.
        --save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
        --save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
        --save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
        --save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
        --nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
        --classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
        --agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
        --augment (bool, optional): Flag for augmented inference. Defaults to False.
        --visualize (bool, optional): Flag for visualizing features. Defaults to False.
        --update (bool, optional): Flag to update all models in the model directory. Defaults to False.
        --project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
        --name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
        --exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
        --line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
        --hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
        --hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
        --half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
        --dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
        --vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
            consecutive frames. Defaults to 1.

    Returns:
        argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.

    Example:
        ```python
        from ultralytics import YOLOv5
        args = YOLOv5.parse_opt()
        ```
    """
    parser = argparse.ArgumentParser()
    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
    parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
    parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
    parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
    parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
    parser.add_argument("--view-img", action="store_true", help="show results")
    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
    parser.add_argument(
        "--save-format",
        type=int,
        default=0,
        help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
    )
    parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
    parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
    parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
    parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
    parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
    parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
    parser.add_argument("--augment", action="store_true", help="augmented inference")
    parser.add_argument("--visualize", action="store_true", help="visualize features")
    parser.add_argument("--update", action="store_true", help="update all models")
    parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
    parser.add_argument("--name", default="exp", help="save results to project/name")
    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
    parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
    parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
    parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
    parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    """
    Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.

    Args:
        opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.

    Returns:
        None

    Note:
        This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
        options. Refer to the usage guide and examples for more information about different sources and formats at:
        https://github.com/ultralytics/ultralytics

    Example usage:

    ```python
    if __name__ == "__main__":
        opt = parse_opt()
        main(opt)
    ```
    """
    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

You should load the model using torch.hub and then make predictions.

1 Like

i had solved the issue, thanks

Were you able to solve it with what Toxite shared? If so, please mark his reply as the solution. If it was something else, it would be useful for others running into the same problem if you could share what resolved your issue.